翻訳と辞書 |
Coherent ring : ウィキペディア英語版 | Coherent ring In mathematics, a (left) coherent ring is a ring in which every finitely generated left ideal is finitely presented. Many theorems about finitely generated modules over Noetherian rings can be extended to finitely presented modules over coherent rings. Every left Noetherian ring is left-coherent. The ring of polynomials in an infinite number of variables is an example of a left-coherent ring that is not left Noetherian. A ring is left coherent if and only if every direct product of flat right modules is flat , . Compare this to: A ring is left Noetherian if and only if every direct sum of injective left modules is injective. ==References==
* * *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Coherent ring」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|